3 resultados para GENOMIC SEQUENCE

em Aquatic Commons


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Procedures for sampling genomic DNA from live billfishes involve manual restraint and tissue excision that can be difficult to carry out and may produce stresses that affect fish survival. We examined the collection of surface mucous as a less invasive alternative method for sourcing genomic DNA by comparing it to autologous muscle tissue samples from Atlantic blue marlin (Makaira nigricans), white marlin (Tetrapturus albidus), sailfish (Istiophorus platypterus), and swordfish (Xiphias gladius). Purified DNA from mucous was comparable to muscle and was suitable for conventional polymerase chain reaction, random amplified polymorphic DNA analysis, and mitochondrial and nuclear locus sequencing. The nondestructive and less invasive characteristics of surface mucous collection may promote increased survival of released specimens and may be advantageous for other marine fish genetic studies, particularly those involving large live specimens destined for release.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contemporary in-depth sequencing of environmental samples has provided novel insights into microbial community structures, revealing that their diversity had been previously underestimated. Communities in marine environments are commonly composed of a few dominant taxa and a high number of taxonomically diverse, low-abundance organisms. However, studying the roles and genomic information of these “rare” organisms remains challenging, because little is known about their ecological niches and the environmental conditions to which they respond. Given the current threat to coral reef ecosystems, we investigated the potential of corals to provide highly specialized habitats for bacterial taxa including those that are rarely detected or absent in surrounding reef waters. The analysis of more than 350,000 small subunit ribosomal RNA (16S rRNA) sequence tags and almost 2,000 nearly full-length 16S rRNA gene sequences revealed that rare seawater biosphere members are highly abundant or even dominant in diverse Caribbean corals. Closely related corals (in the same genus/family) harbored similar bacterial communities. At higher taxonomic levels, however, the similarities of these communities did not correlate with the phylogenetic relationships among corals, opening novel questions about the evolutionary stability of coral-microbial associations. Large proportions of OTUs (28.7–49.1%) were unique to the coral species of origin. Analysis of the most dominant ribotypes suggests that many uncovered bacterial taxa exist in coral habitats and await future exploration. Our results indicate that coral species, and by extension other animal hosts, act as specialized habitats of otherwise rare microbes in marine ecosystems. Here, deep sequencing provided insights into coral microbiota at an unparalleled resolution and revealed that corals harbor many bacterial taxa previously not known. Given that two of the coral species investigated are listed as threatened under the U.S. Endangered Species Act, our results add an important microbial diversity-based perspective to the significance of conserving coral reefs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ciguatoxins (CTX) are polyether neurotoxins that target voltage-gated sodium channels and are responsible for ciguatera, the most common fish-borne food poisoning in humans. This study characterizes the global transcriptional response of mouse liver to a symptomatic dose (0.26 ng/g) of the highly potent Pacific ciguatoxin-1 (P-CTX-1). At 1 h post-exposure 2.4% of features on a 44K whole genome array were differentially expressed (p ≤ 0.0001), increasing to 5.2% at 4 h and decreasing to 1.4% by 24 h post-CTX exposure. Data were filtered (|fold change| ≥ 1.5 and p ≤ 0.0001 in at least one time point) and a trend set of 1550 genes were used for further analysis. Early gene expression was likely influenced prominently by an acute 4°C decline in core body temperature by 1 h, which resolved by 8 h following exposure. An initial downregulation of 32 different solute carriers, many involved in sodium transport, was observed. Differential gene expression in pathways involving eicosanoid biosynthesis and cholesterol homeostasis was also noted. Cytochrome P450s (Cyps) were of particular interest due to their role in xenobiotic metabolism. Twenty-seven genes, mostly members of Cyp2 and Cyp4 families, showed significant changes in expression. Many Cyps underwent an initial downregulation at 1 h but were quickly and strongly upregulated at 4 and 24 h post-exposure. In addition to Cyps, increases in several glutathione S-transferases were observed, an indication that both phase I and phase II metabolic reactions are involved in the hepatic response to CTX in mice.